carolynporco:

Twenty-five years ago today, Voyager 2 flew within 5,000 km of the cloud tops of Neptune, capping the most glorious and ambitious exploration humankind has ever engineered. We could not claim to know the contents of our cosmic neighborhood without Voyager’s tour through the planetary portion of our solar system. For many of us, including myself, it was a defining, life-shaping experience.

Here are some pictures from that oh-so-memorable time … a time of discovery and peaceful conquest that set the stage for the return expeditions to Jupiter and Saturn, which came to be called Galileo and Cassini. The pictures include artwork, a close-up of the high methane clouds on Neptune, preparations for TV interviews by MacNeil-Lehrer Newshour and CNN, the final press conference in which I gave the summary of our findings on Neptune’s rings, and a pic of Chuck Berry and Carl Sagan, speaking to the Voyager team members already giddy in their celebration of the successful conclusion of Voyager’s historic, 12-year odyssey.

Enjoy the memories!

pappubahry:

A dark Saturn and rings, photographed by Cassini, 11 January 2014.

pappubahry:

A dark Saturn and rings, photographed by Cassini, 11 January 2014.


Antares star and Scorpius Constellation by César Cantú

Antares star and Scorpius Constellation by César Cantú

spaceexp:

Venus, Jupiter, and the Moon Early This Morning
Source: corypoole (reddit)

spaceexp:

Venus, Jupiter, and the Moon Early This Morning

Source: corypoole (reddit)

distant-traveller:


Hubble looks at light and dark in the universe







This new NASA/ESA Hubble Space Telescope image shows a variety of intriguing cosmic phenomena.
Surrounded by bright stars, towards the upper middle of the frame we see a small young stellar object (YSO) known as SSTC2D J033038.2+303212. Located in the constellation of Perseus, this star is in the early stages of its life and is still forming into a fully-grown star. In this view from Hubble’s Advanced Camera for Surveys(ACS) it appears to have a murky chimney of material emanating outwards and downwards, framed by bright bursts of gas flowing from the star itself. This fledgling star is actually surrounded by a bright disk of material swirling around it as it forms — a disc that we see edge-on from our perspective.
However, this small bright speck is dwarfed by its cosmic neighbor towards the bottom of the frame, a clump of bright, wispy gas swirling around as it appears to spew dark material out into space. The bright cloud is a reflection nebula known as [B77] 63, a cloud of interstellar gas that is reflecting light from the stars embedded within it. There are actually a number of bright stars within [B77] 63, most notably the emission-line star LkHA 326, and it nearby neighbor LZK 18.
These stars are lighting up the surrounding gas and sculpting it into the wispy shape seen in this image. However, the most dramatic part of the image seems to be a dark stream of smoke piling outwards from [B77] 63 and its stars — a dark nebula called Dobashi 4173. Dark nebulae are incredibly dense clouds of pitch-dark material that obscure the patches of sky behind them, seemingly creating great rips and eerily empty chunks of sky. The stars speckled on top of this extreme blackness actually lie between us and Dobashi 4173.

Image credit: ESA/NASA

distant-traveller:

Hubble looks at light and dark in the universe

This new NASA/ESA Hubble Space Telescope image shows a variety of intriguing cosmic phenomena.

Surrounded by bright stars, towards the upper middle of the frame we see a small young stellar object (YSO) known as SSTC2D J033038.2+303212. Located in the constellation of Perseus, this star is in the early stages of its life and is still forming into a fully-grown star. In this view from Hubble’s Advanced Camera for Surveys(ACS) it appears to have a murky chimney of material emanating outwards and downwards, framed by bright bursts of gas flowing from the star itself. This fledgling star is actually surrounded by a bright disk of material swirling around it as it forms — a disc that we see edge-on from our perspective.

However, this small bright speck is dwarfed by its cosmic neighbor towards the bottom of the frame, a clump of bright, wispy gas swirling around as it appears to spew dark material out into space. The bright cloud is a reflection nebula known as [B77] 63, a cloud of interstellar gas that is reflecting light from the stars embedded within it. There are actually a number of bright stars within [B77] 63, most notably the emission-line star LkHA 326, and it nearby neighbor LZK 18.

These stars are lighting up the surrounding gas and sculpting it into the wispy shape seen in this image. However, the most dramatic part of the image seems to be a dark stream of smoke piling outwards from [B77] 63 and its stars — a dark nebula called Dobashi 4173. Dark nebulae are incredibly dense clouds of pitch-dark material that obscure the patches of sky behind them, seemingly creating great rips and eerily empty chunks of sky. The stars speckled on top of this extreme blackness actually lie between us and Dobashi 4173.

Image credit: ESA/NASA

astronomicalwonders:

Theorem of a Supernova - The NuSTAR Mission
NuSTAR has provided the first observational evidence in support of a theory that says exploding stars slosh around before detonating. That theory, referred to as mild asymmetries, is shown here in a simulation by Christian Ott of the California Institute of Technology, Pasadena.
In this simulation, a supernova explosion is already underway. The small circle in the center represents the material that will form the dense star at the center of a supernova remnant, called a neutron star. The bright ring surrounding it is the shock wave created in the explosion. The colors represent temperature fluctuations. When the movie starts, the explosion has “stalled out,” because the material falling back onto the neutron star has backed up, like too many cars on the freeway, blocking the shock wave from progressing.
As the explosion continues, material starts to slosh around, reenergized by particles called neutrinos. The neutrinos heat up the material more and more, causing the hot regions to rise into the cooler regions and form large bubbles in the material. Once the bubbles break through the surrounding material, it’s as if the top of a pressure cooker blows off. There’s nothing holding back the shock wave any more and the star explodes.
Credit: NASA/Christian Ott/Caltech

astronomicalwonders:

Theorem of a Supernova - The NuSTAR Mission

NuSTAR has provided the first observational evidence in support of a theory that says exploding stars slosh around before detonating. That theory, referred to as mild asymmetries, is shown here in a simulation by Christian Ott of the California Institute of Technology, Pasadena.

In this simulation, a supernova explosion is already underway. The small circle in the center represents the material that will form the dense star at the center of a supernova remnant, called a neutron star. The bright ring surrounding it is the shock wave created in the explosion. The colors represent temperature fluctuations. When the movie starts, the explosion has “stalled out,” because the material falling back onto the neutron star has backed up, like too many cars on the freeway, blocking the shock wave from progressing.

As the explosion continues, material starts to slosh around, reenergized by particles called neutrinos. The neutrinos heat up the material more and more, causing the hot regions to rise into the cooler regions and form large bubbles in the material. Once the bubbles break through the surrounding material, it’s as if the top of a pressure cooker blows off. There’s nothing holding back the shock wave any more and the star explodes.

Credit: NASA/Christian Ott/Caltech

chapmangamo:

"Greetings, aliens. Welcome to Planet… Terra.”
Available as a print
twitter | facebook | instagram | shop

chapmangamo:

"Greetings, aliens. Welcome to Planet… Terra.”

Available as a print

twitter | facebook | instagram | shop

txchnologist:

Making Legs For Future Robotic Animal Assistants

University of South Florida computer engineer Luther Palmer is working on one of the big problems in robotics—creating legs that can move over all different types of terrain that a machine would find out in the real world. His team at the Biomorphic Robotics Lab is doing intensive computer modeling and taking tips from horses and humans on agile locomotion.

The team’s vision, like many other roboticists, is to imbue the best movement ideas developed through evolution into their machines. Palmer writes on his lab’s website that in the future, “robotic canines will gallop up stairs and over collapsed beams in burning buildings, locating occupants for rescue personnel.”

He also sees a time of robotic horses to carry heavy loads, cockroaches to conduct surreptitious surveillance and gophers to prepare alien worlds for human habitation. 

See the National Science Foundation video  and one for Palmer’s RecoRoach below.

Read More

theuniverseatlarge:

image

image

Messier 43 - De Mairan’s Nebula

M43, although apparently an individual star-forming region, is actually a part of the Orion Nebula and the much larger Orion Molecular Cloud Complex. As with its parent nebula, M43 features emission and reflection nebulae, as well as dark nebulae. It was discovered by Jean-Jacques Dortous de Mairan before 1731 and catalogued by Charles Messier in 1764. If you can find the Orion Nebula, you can find M43!

Top: Wide-Field - AAO/David Malin

Bottom: Close-Up - NASA

afro-dominicano:

The Violent Violet Sun

"After dodging clouds and hailstorms all week I was able to record my first solar image at the CaK wavelength… 393.37nm in the violet end of the spectrum. I see almost no detail visually due to my eye’s poor sensitivity at this wavelength. But the camera sees good!"Alan Friedman

distant-traveller:

Witnessing the early growth of a giant

Astronomers have uncovered for the first time the earliest stages of a massive galaxy forming in the young Universe. The discovery was made possible through combining observations from the NASA/ESA Hubble Space Telescope, NASA’s Spitzer Space Telescope, ESA’s Herschel Space Observatory, and the W.M. Keck Observatory in Hawaii. The growing galaxy core is blazing with the light of millions of newborn stars that are forming at a ferocious rate.
Elliptical galaxies are large, gas-poor gatherings of older stars and are one of the main types of galaxy along with their spiral and lenticular relatives. Galaxy formation theories suggest that giant elliptical galaxies form from the inside out, with a large core marking the very first stages of formation.




However, evidence of this early construction phase has eluded astronomers — until now.
Astronomers have now spotted a compact galactic core known as GOODS-N-774, and nicknamed Sparky. It is seen as it appeared eleven billion years ago, just three billion years after the Big Bang.
"This core formation process is a phenomenon unique to the early Universe,"explains Erica Nelson of Yale University, USA, lead author of the science paper announcing the results, "we do not see galaxies forming in this way any more. There’s something about the Universe at that time that could form galaxies in this way that it now can’t. We suspect that the Universe could produce denser objects because the Universe as a whole was denser shortly after the Big Bang. It is much less dense now, so it can’t do it anymore."
Although only a fraction of the size of the Milky Way, the infant galaxy is crammed with so many young stars that it already contains twice as much mass as our entire galaxy. It is thought that the fledgling galaxy will continue to grow, eventually becoming a giant elliptical galaxy. The astronomers think that this barely visible galaxy may be representative of a much larger population of similar objects that are too faint or obscured by dust to be spotted — just like the Sun can appear red and faint behind the smoke of a forest fire.
Alongside determining the galaxy’s size from the Hubble images, the team dug into archival far-infrared images from NASA’s Spitzer Space Telescope and the ESAHerschel Space Observatory to see how fast the compact galaxy is churning out stars. GOODS-N-774 is producing 300 stars per year. "By comparison, the Milky Way produces thirty times fewer than this — roughly ten stars per year," says Marijn Franx of Leiden University in the Netherlands, a co-author of the study. "This star-forming rate is really intense!"
This tiny powerhouse contains about twice as many stars as our galaxy, all crammed into a region only 6000 light-years across. The Milky Way is about 100 000 light-years across.
Astronomers believe that this frenzied star formation occurs because the galactic centre is forming deep inside a gravitational well of dark matter, an invisible form of matter that makes up the scaffolding upon which galaxies formed in the early Universe. A torrent of gas is flowing into the well and into the compact galaxy, sparking waves of star birth.
The sheer amount of gas and dust within an extreme star-forming region like this may explain why they have eluded astronomers until now. Bursts of star formation create dust, which builds up within the forming core and can block some starlight— GOODS-N-774 was only just visible, even using the resolution and infrared capabilities of Hubble’s Wide Field Camera 3.

Image credit: NASA, ESA, Z. Levay and G. Bacon (Space Telescope Science Institute)

distant-traveller:

Witnessing the early growth of a giant

Astronomers have uncovered for the first time the earliest stages of a massive galaxy forming in the young Universe. The discovery was made possible through combining observations from the NASA/ESA Hubble Space Telescope, NASA’s Spitzer Space Telescope, ESA’s Herschel Space Observatory, and the W.M. Keck Observatory in Hawaii. The growing galaxy core is blazing with the light of millions of newborn stars that are forming at a ferocious rate.

Elliptical galaxies are large, gas-poor gatherings of older stars and are one of the main types of galaxy along with their spiral and lenticular relatives. Galaxy formation theories suggest that giant elliptical galaxies form from the inside out, with a large core marking the very first stages of formation.

However, evidence of this early construction phase has eluded astronomers — until now.

Astronomers have now spotted a compact galactic core known as GOODS-N-774, and nicknamed Sparky. It is seen as it appeared eleven billion years ago, just three billion years after the Big Bang.

"This core formation process is a phenomenon unique to the early Universe,"explains Erica Nelson of Yale University, USA, lead author of the science paper announcing the results, "we do not see galaxies forming in this way any more. There’s something about the Universe at that time that could form galaxies in this way that it now can’t. We suspect that the Universe could produce denser objects because the Universe as a whole was denser shortly after the Big Bang. It is much less dense now, so it can’t do it anymore."

Although only a fraction of the size of the Milky Way, the infant galaxy is crammed with so many young stars that it already contains twice as much mass as our entire galaxy. It is thought that the fledgling galaxy will continue to grow, eventually becoming a giant elliptical galaxy. The astronomers think that this barely visible galaxy may be representative of a much larger population of similar objects that are too faint or obscured by dust to be spotted — just like the Sun can appear red and faint behind the smoke of a forest fire.

Alongside determining the galaxy’s size from the Hubble images, the team dug into archival far-infrared images from NASA’s Spitzer Space Telescope and the ESAHerschel Space Observatory to see how fast the compact galaxy is churning out stars. GOODS-N-774 is producing 300 stars per year. "By comparison, the Milky Way produces thirty times fewer than this — roughly ten stars per year," says Marijn Franx of Leiden University in the Netherlands, a co-author of the study. "This star-forming rate is really intense!"

This tiny powerhouse contains about twice as many stars as our galaxy, all crammed into a region only 6000 light-years across. The Milky Way is about 100 000 light-years across.

Astronomers believe that this frenzied star formation occurs because the galactic centre is forming deep inside a gravitational well of dark matter, an invisible form of matter that makes up the scaffolding upon which galaxies formed in the early Universe. A torrent of gas is flowing into the well and into the compact galaxy, sparking waves of star birth.

The sheer amount of gas and dust within an extreme star-forming region like this may explain why they have eluded astronomers until now. Bursts of star formation create dust, which builds up within the forming core and can block some starlight— GOODS-N-774 was only just visible, even using the resolution and infrared capabilities of Hubble’s Wide Field Camera 3.

Image credit: NASA, ESA, Z. Levay and G. Bacon (Space Telescope Science Institute)

jtotheizzoe:

You guys like Saturn, right? Here’s a whole gallery of Saturn GIFs, from rings to moons, captured by the Cassini spacecraft. They’re part modern art and part science.

Next to the Voyager twins, I think Cassini might be the best satellite NASA ever launched. Certainly takes the best pictures. Tumblr’s own staceythinx  has an iPad app called Cassini HD that features even more photos, plus color, plus science.

(GIFs by framesandflames)

humanoidhistory:

The planet Saturn, observed by the Cassini space probe on August 19, 2014. (NASA/Jet Propulsion Laboratory)